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Abstract The effect of the tube wall heat conduction on the natural convection in a tilted long
cylindrical envelope with constant, but different temperature of the two ends and an adiabatic outer
surface was numerically investigated. The envelope is supposed to be a simplified model for the pulse
tube in a pulse tube refrigerator when the pulse tube is positioned at different orientations. It is found
that the cylindrical envelope lateral wall heat conduction can enhance the heat transfer from the hot end
to the cold end, not only because of the increase in pure heat conduction in the wall, but more
importantly, also the intensification of the natural convection within the enclosure. This enhancement
is resulted from the big temperature difference between the tubewall and the adjacent fluid near the hot
and cold ends. Adoption of low thermal conductivity tube can effectively reduce such additional heat
transfers from hot to cold end, thus reducing the loss of cooling capacity for the pulse tube refrigerator.
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Nomenclature
a ¼ fluid thermal diffusivity
cp ¼ specific heat at constant pressure
d ¼ diameter
Eb ¼ emmisive power of black body
g ¼ gravitational acceleration
L ¼ length of the pulse tube
p ¼ pressure
Pr ¼ Prandtl number
Q ¼ heat transfer rate
R ¼ radius
RaD ¼ gb(Th2Tc )d 3/(av)
RaL ¼ gb(Th2Tc )L 3/(av)
Rt ¼ radiative thermal resistance

S ¼ source term
SMAX ¼ maximum absolute value of

mass flow rate residual of control
volume

SSUM ¼ summation of mass flow rate
residual of all control volume in
the computational domain

T ¼ temperature
u, v, w ¼ velocity component in

circumferential, radial and axial
coordinate

X ¼ angle factor
z ¼ axial coordinate

Greek symbols
b ¼ volume expansion coefficient
G ¼ nominal diffusion coefficient

d ¼ tube wall thickness
1 ¼ surface emissivity
h ¼ fluid dynamic viscosity
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1. Introduction
Natural convection in enclosures is a classical problem in both experimental and
numerical heat transfer, and many studies have been performed (Barakos and
Mitsoulis, 1994; Charrie-Mojtabi et al., 1979; Date, 1986; De Vahl Davis, 1983; Hortman
and Peric, 1994; Keyhani et al., 1983; Kuehn and Goldstein, 1976, 1980; Ozoe et al., 1985;
Saitoh and Hirose, 1989; Wei and Tao, 1996a, b). However, most of the earlier numerical
investigations were based on the following conditions.

(1) Boussinesq assumption was adopted, which is valid for a limited value of
temperature difference between the hot and cold surfaces (Gary and Giorgin,
1976). For example, for air at room temperature, within a deviation of 10 per cent,
the maximum temperature difference for adoption of this assumption is below
40 K (Lankhorst, 1991).

(2) As far as the geometric shape is concerned, most studies were conducted for
rectangular enclosures (Barakos and Mitsoulis, 1994; De Vahl Davis, 1983;
Hortman and Peric, 1994; Ozoe et al., 1985; Saitoh and Hirose, 1989) or annulus
(Charrie-Mojtabi et al., 1979; Date, 1986; Keyhani et al., 1983; Kuehn and
Goldstein, 1976; Wei and Tao, 1996a, b).

Very few investigations were conducted for a long cylindrical envelope with two ends
being maintained at constant, but different temperatures, in spite of its common
existence in various engineering applications. A search of literature only revealed
several papers (Bejan and Tien, 1978; Edwards and Catton, 1969; Kimura and Bejan,
1980), among which those of Bejan and Tien (1978) and Edwards and Catton (1969) are
theoretical works based on Boussinesq assumption, and that of Kimura and Bejan
(1980) is an experimental study for water with a maximum temperature difference
about 708C. One typical application example is the pulse tube of pulse tube refrigerator.
The schematic diagram of pulse tube refrigerator is shown in Figure 1. Pulse tube
refrigerator is an attractive cryocooler of small capacity widely used in aerospace
engineering and for military purposes because of its inherent advantages such as no
moving parts in the cold stage, low manufacturing cost, reduced mechanical vibration,
etc. As shown in Figure 1, the pulse tube itself is a long tube with an inner diameter
ranging from several millimeters to tens millimeters, and its two ends can be regarded
as two isothermal surfaces. The pulse tube may be connected with the pressure wave
generator by a long flexible tube with a length of several meters, thereby reducing the
interference of noise from the compressor and rotary valve to a negligible level.
The flexible connectivity between compressor and cold end also allows one to change
the orientation of the pulse tube, which is an attractive feature for application. The fluid
flow in the pulse tube system is oscillating, with frequency ranging from 2 Hz to tens of
Hz. The different orientation of the pulse tube leads to different relative positions
of the hot and cold ends, which may cause natural convection in the enclosure when

lw ¼ wall thermal conductivity
n ¼ fluid kinetic viscosity
u ¼ inclination angle
r ¼ fluid density
f ¼ general variable
w ¼ circumferential angle

Subscripts
a ¼ adiabatic
c ¼ cold
cond ¼ conduction
h ¼ hot
m ¼ mean
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the frequency is low. As a first approximation, the forced convection of the pulsating
streaming and the natural convection due to temperature difference may be decoupled
(Thummes et al., 1997), and the respective flow can be investigated in detail to reveal
its inherent characteristics. For a pulse tube refrigerator with low frequency, the
existence of such a natural convection may have appreciable effect on the cooling
capacity loss, as will be seen from the predicted results. From heat transfer point of
view, this is a natural convection in a long cylindrical envelope. The temperature
difference between the hot and cold ends may be as large as 220 K or more, the
conventional Boussinesq assumption by no means applicable, and a full consideration
of the variable thermal properties must be taken in the analysis of the natural
convection. Within the authors’ knowledge, such a problem has not been reported in
the published papers.

The geometry of the present study is now presented. A tilted cylindrical envelope is
shown in Figure 2, where the origin of the Z coordinate is fixed at the hot end and u is
the angle between the axis of the pulse tube and the gravity. When u ¼ 08; the hot end

Figure 1.
Schematic diagram of
pulse tube refrigerator

Figure 2.
Coordinates and geometry
of the cylindrical envelope
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is up and the cold end is down; while for u ¼ 1808; the situation is the opposite.
Thummes et al. (1997) reported their experiments in this regard, and found a profound
effect of the natural convection in the pulse tube on the cooling capacity of a PTR
(Thummes et al., 1997). They also adopted some available heat transfer correlations for
the natural convection in cylindrical enclosures at different orientations and estimated
the heat transfer rate by these correlations. They obtained the heat transfer rate of the
natural convection in the pulse tube from their experimental net cooling power and
from the prediction of the correlations. In the u range from 0 to 708, and at u ¼ 1808;
they obtained qualitative agreement, while in the range of u ¼ 70-1808 the correlations
they adopted only roughly describes the observed variation of heat transfer rate.
According to author’s, such result may be expected since the correlations they adopted
are all based on the small temperature difference cases, which cannot take the effect of
the severe variation in thermal physical properties into account. According to Kays and
Crawford (1980), the Boussinesq assumption is a two-part approximation:

(1) it neglects all variable properties effects in the governing equations, except for
the density in the momentum equations and

(2) it approximates the density difference term with simplified equations of state:

rr 2 r ¼ rbðt 2 trÞ ð1Þ

where b is the volumetric coefficient of thermal expansion (for ideal gas
b ¼ 1=Tr), and tr is a reference temperature.

In our computation, the hot end is set at 300 K, and the cold end at 80 K. The
temperature difference is as large as 220 K. The variation of thermal conductivity and
dynamic viscosity of helium is more than a factor of 2 (Table I). Thus, the
above-mentioned Boussinesq assumption is not acceptable, and the variations of the
thermal properties (including density) with temperature in all terms of the governing
equations should be considered. This was implemented by introducing the
curve-fitting equations for l,h, cp and Pr in the code based on the data provided by
Barron (1999), and before every iteration the thermophysical properties were calculated
from the available temperature field. The gas density was determined by using the
state equation of perfect gas. To demonstrate the necessity of such a practice,
comparative computational results will be presented later.
As indicated above, the only experimental work published so far is that of Kimura and
Bejan (1980). They performed an experimental study for the natural convection of
water in a horizontal tube with the two ends at different, but constant temperatures.
The Rayleigh number based on the tube diameter was ranged from 108 to 109, with the
end temperature difference around 708C. They found that at each cross section normal
to the axial direction, the temperature depth variation along the vertical diameter is
almost linear. In addition, in the cross section through the z-r plane, the measured

Property 300 K 80 K

Thermal conductivity (W/m K) 1.505 £ 1021 6:404 £ 1021

Dynamic viscosity (kg/m s) 1.987£ 1025 8:200 £ 1026

Density kg/m3 2.888 1:083 £ 101

Prandtl number 0.6874 0.6658

Table I.
Thermophysical

properties of helium
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velocity distributions show that the flow consists of two jets, one flowing towards the
cold end along the top surface and the other flowing in the opposite direction along the
bottom. Some qualitative comparisons of our numerical predictions and the test results
of Kimura and Bejan (1980) will be made later in this paper.

He and coworkers (He, 2002; He et al., 2004a, b) performed three-dimensional
numerical simulation for the natural convection in a simplified pulse tube model.
Rather than adopting the Boussinesq assumption, they considered the variation of the
thermal properties with temperature. But they neglected the effect of the heat
conduction in the lateral wall. The predicted curve pattern of the heat loss with the
inclined angle provided in He (2002) and He et al. (2004a, b) is quite similar to the
experimental results shown in Thummes et al. (1997), but quantitatively, the numerical
value is lower than the experimental one by about 20-25 per cent. A major reason was
attributed to the neglect of the lateral wall heat conduction (He, 2002).

The effect of wall heat conduction on the natural convection in a rectangular
enclosure has been the object of previous work (Costa, 2002; Du and Bilgen, 1992; Ho
and Lin, 1989, 1990; Ho et al., 1989; Kim and Viakanta, 1985). Generally speaking, these
studies reveal that heat transfer and fluid flow in the enclosure is strongly influenced
by the coupling between the solid wall conduction and fluid convection. However, most
earlier studies focused on the rectangular enclosure with diffusive vertical walls and
adiabatic top/bottom surfaces or vertical cylindrical enclosure with diffusive vertical
wall and adiabatic top/bottom surfaces. These situations are quite different from the
present case, hence specific conclusions resulting from earlier investigations cannot be
applied to the present case. In this paper, the effect of the lateral wall heat conduction
on the natural convection in a tiled long cylindrical envelope with constant, but
different temperatures of the two ends is numerically investigated. In the calculation,
the Boussineq assumption is not adopted and the variations of the thermal properties
with temperature are fully considered. The length of the tube is 250 mm. The inner
diameter is 27.8 mm ðL=D ¼ 9:0Þ and the outer diameter is 29.8 mm (tube wall
thickness equals 1 mm). The average pressure in the tube is 18 bar (He, 2002).
Computations were conducted for every 108 increment starting from u ¼ 08: The
working fluid is helium. These conditions are taken from He et al. (2004a, b) where the
heat conduction in the lateral wall was totally neglected and the lateral wall was
simply simulated by an adiabatic boundary condition.

In the following presentation, the three-dimensional governing equations of the
physical problem will be presented first, followed by a brief description of the
numerical methods. Then details of numerical results, including the velocity and
temperature distributions will be provided. Analysis will be focused on why the tube
wall heat conduction can significantly enhance the natural convection in the enclosure
when the hot end is down. Finally, some conclusions will be drawn.

2. Governing equations
The problem considered can be outlined as follows. A tube with finite thickness
contains helium within it. The two ends of the tube are kept at 300 and 80 K,
respectively. The outside surface of the tube is adiabatic, and the tube can be
positioned at any orientation. The heat transfer from the hot end to the cold end
because of the natural convection and the tube lateral wall heat conduction is to be
predicted. This problem is a conjugated one and the heat conduction in the lateral wall
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should be predicted simultaneously with the fluid flow and heat transfer of the fluid
within the tube.

The three-dimensional governing equations for fluid flow and heat transfer in a
cylindrical envelope with variable thermal properties take the following form:
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where f is the general variable, representing u, v, w and T, G is the general diffusion
coefficient, and S is the general source term. For a case with variable thermophysical
properties, the general source term takes the following form for different variables:
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It can be seen from equation (3) that apart from the pressure gradient term and
gravitational term, quite a lot of terms of second derivatives of velocities exist, making
the discretization and computational procedure very complicated. We adopt an
assumption here to simplify the computation: the thermophysical properties in the
velocity source term may be moved to the outside of the derivatives but still treated as
a variable Then using the mass conservation law expressed by
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the source terms for the three components of velocity may be simplified as follows:

(1) In the fluid part of the pulse tube

u : S ¼ 2
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þ rg cos u ð5aÞ
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It should be noted that the above mathematical formulations are also valid for
the heat conduction in the solid wall by setting appropriate value of
thermophysical properties and the source terms.

(2) In the solid part of the pulse tube

w : S ¼ 0:0 ð6aÞ

v : S ¼ 0:0 ð6bÞ

u : S ¼ 0:0 ð6cÞ

The boundary conditions are depicted as follows:
For u, v, w: at all solid walls, u ¼ v ¼ w ¼ 0; at the longitudinal cross section (w ¼ 0

and w ¼ p) symmetry condition is used, i.e.

w ¼ 0;
›v

›w
¼

›u

›w
¼ 0

For T: at hot end ðz ¼ 0Þ; T ¼ Th; at cold end ðz ¼ LÞ; T ¼ Tc; at the outer surface of
the lateral wall ðr ¼ RÞ; ›T=›r ¼ 0; at the longitudinal cross section (w ¼ 0 and
w ¼ p) symmetry condition is used, ›T=›w ¼ 0.

Some more words are added here about the symmetry boundary condition adopted
in this study. It is well-known that for natural convection in enclosure under certain
value of Ra number non-symmetrical fluid flow or even unsteady flow may be formed
for steady and geometrically symmetrical condition (Powe et al., 1969). In that case,
transient and three-dimensional computations for the full envelope should be
conducted. For the case studied, however, the value of Ra number is not high, and our
predicted results from the present model agree well with some available experimental
results (to be shown later). Thus, it is believed that the present model is an appropriate
approximation for the problem studied.

3. Numerical methods
The fluid-solid conjugate heat transfer is solved by full-field computation method.
Solid in computational domain is regarded as fluid of infinite viscosity. The same
governing equations are applied for both fluid and solid. When the solid field was
calculated the G of velocity is infinite (implemented by taking a very large number)
(Patankar, 1980) and the G of temperature is defined as k/Cp, where k is the thermal
conductivity of the solid and Cp is the specific heat at constant pressure of the fluid
close to the lateral wall. In this program, Cp of the fluid was obtained from the equation
k=Cp ¼ h=Pr; in which every parameter of the fluid uses local value. When the fluid
field was calculated the G of velocity is h and the G of temperature is h/Pr. In the
computations, two kinds of materials are considered: stainless steel and nylon.
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Their thermal conductivity are taken as 10 and 0.25 W/m K, respectively. In order to
further reveal the effect of the wall heat conduction, computations are also conducted
for four more cases with wall thermal conductivity of 30, 60, 100, and 200 W/m K,
respectively.

The governing equations are discretized by the finite volume method (Patankar,
1980; Tao, 2001). The diffusion and convection terms are discretized by the power-law
scheme. The segregated solution algorithm, SIMPLEC, is adopted, where the
momentum equations are solved one by one, the pressure field is updated from the
mass conservation equation, and the pressure correction is used to revise both velocity
components and pressure. The energy equation is coupled with the momentum equation
via the source term, hence solved simultaneously with the momentum equations. The
resulting algebraic equations are solved by successive line underrelaxation method. To
guarantee the convergence of iteration, the relaxation factors for velocity components
and temperature were all taken as 0.01. The temperature gradient at the hot and cold
walls are determined by three-point second-order accurate discretized equation. The
two-point formally first-order discretization formulation is also used. Comparison found
that the numerical difference between these two discretized expressions is very small,
always not being greater than 1 per cent.

The grid is distributed uniformly in the circumferential direction. In the radius
direction, the grids are distributed uniformly in the pulse tube’s solid part and in the
fluid part individually, while in the axial direction, non-uniform distribution is adopted
with more grids clustering near the two end walls. The grid number in three directions
is 22(r)£ 20(w) £ 80(z) (Figure 3). This grid system was based on the grid system
adopted in He (2002) where a careful grid independent examination based on the total
heat transfer rate between the hot and cold end was conducted for the case neglecting
the tube wall heat conduction, and found that a grid system of 20(r) £ 20(w) £ 80(z)
(totally 32,000 grid points) can obtain grid-independent results (Figure 3(a)). In this
study, two control volumes were added in the solid wall region. Based on Figure 3(a) a
similar grid-independence examination is also conducted in the present work with two
more control volumes being added in the lateral wall. Nine grid systems are examined,
namely: 13 £ 15 £ 48 (9360 in total), 15 £ 17 £ 60 (15,300 in total), 18 £ 20 £ 64
(23,040), 19 £ 21 £ 74 (29,526), 20 £ 22 £ 80 (35,200), 20 £ 22 £ 90 (39,600),
22 £ 24 £ 90 (47,520), 22 £ 24 £ 100 (52,800) and 22 £ 24 £ 110 (58,080). The
variation of the average heat transfer rate with grid point is shown in Figure 3(b).
As can be seen there, the numerical solution from the grid system with 20 £ 22 £ 80
grid points can be considered as a grid-independent one. Thus, all the computations are
conducted by using this grid system.

As indicated in He (2002) and He et al. (2004a, b), the problem at hand is a highly
non-linear one and the thermophysical properties varies significantly along the axial
direction. This makes the convergence of the iterative procedure very difficult.
Numerical practices show that with zero velocity and linear temperature distributions
as the initial fields, the cross-sectional axial flow rate, symbolized by GM, increases
with the iteration first, reaches its maximum, and then approaches some steady value.
The variation patterns of GM with iteration number (ITER) are presented for different
orientations in Figures 4 and 5 (the tube wall thermal conductivity is 10 W/m K, where
GM is defined as follows:
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GM ¼
1

N

XN

k¼1

Z
Vk

rði; j; kÞabsðwði; j; kÞÞr dr dw ð7Þ

where N is the number of section in axial direction (77 in total). Obviously, GM can be
regarded as the section-average axial flow rate.

As seen in the figures, for the case of cold end down, the value of GM approaches
constant after about 10,000 iterations, while for the case of hot end down, 30,000-40,000
iterations are needed. After that period GM keeps approximately constant.

Figure 3.
Grid-independence
examination for the case of
neglecting tube wall heat
conduction
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According to such special feature of iteration process, we select the following criteria to
judge the convergence of the iterative process.

(1) The cross-sectional average axial flow rate GM has been beyond the summit of
GM-ITER curve and approaches almost constant within 200 consecutive
iterations.

(2) The relative change in mean heat transfer rate between two consecutive
iterations is less than 1£ 1024;

Figure 4.
GM vs iteration number

for u ¼ 1008-1808, and
lw¼10 W/m K
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(3) SMAX/GM # 1 £ 1026

(4) ABS(SSUM/GM) # 1 £ 1027

In the above expressions SMAX is the absolute maximum value of control volume
mass flow rate residual:

SMAX ¼ max ½absðFw 2 Fe þ Fs 2 FnÞi;j;k� ð8Þ

Figure 4.
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Figure 5.
GM vs iteration number

for u ¼ 1008-1808, and
lw¼ 0.25 W/m K
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where Fe, Fw, Fn and Fs are the mass flow at the east, west, north and south interface of
control volume (i,j,k), respectively. While SSUM is the summation of the mass flow rate
residual of the whole computation domain:

SSUM ¼
i; j; k

X
ðFw 2 Fe þ Fs 2 FnÞi;j;k ð9Þ

4. Results and discussion
4.1 Model and numerical methods validation
The code used in the present study is an extension of the code developed in He (2002),
where the cylindrical wall was assumed being very thin and treated as adiabatic.
Comprehensive code verification was conducted in He (2002), and a detail description
was provided in He et al. (2004a). Thus, to save space such presentation is omitted.
However, to verify the present model and code, two preliminary computations are
conducted. First, the thermal conductivity of the tube wall was assumed to be 1:0 £
1025 W=m K to simulate the situation of neglecting heat conduction in the lateral wall.
Partial predicted results are presented in Table II, where the numerical results of He
(2002) and He et al. (2004b) were also presented. In the table, the quantity Qcond is the heat
transfer rate of the heat transfer process in the envelope of heat conduction through the
gas and tube wall from the hot to cold end. From the table, we see that the presented
results are almost identical to that of He (2002) and He et al. (2004b), in which the thermal
conductivity of the tube wall was totally neglected. The second computation was
conducted for the inclined angle of 908, i.e. the natural convection of helium in a
horizontal cylindrical envelope. As indicated above, Kimura and Bejan (1980) once
performed experiments for water in a horizontal cylindrical envelope. The thermal
boundary conditions of their test are identical to our situation, with difference in
working fluid, temperature difference and the dimensions. Since we could not get exact
data of their test, for example, what is the thermal conductivity of the tube wall, we did
not simulate their situation. Rather, we performed numerical experiments according
to our condition. The thermal conductivity of the tube wall is taken as 0.25 W/m K.
We believe that qualitatively the predicted results should have something in common
compared to their experimental results. In Kimura and Bejan (1980) the temperature
distributions along the diameter in five cross sections (one in the center, two adjacent to
the hot and cold ends, and other two in between) and the top, center and bottom
temperatures in the vertical longitudinal sections were provided. Our results of

Case Qm (W) GM (kg/s) Qcond (W)

u ¼ 408
lw¼1.0 £ 1025 W/m K 8.806 £ 1022 2.937 £ 1026 2.945 £ 1022

Results in Bejan and Tien (1978) 8.860 £ 1022 2.936 £ 1026 2.945 £ 1022

u ¼ 1208
lw¼1.0 £ 1025 W/m K 7.193 5.485 £ 1025 2.779 £ 1022

Results in Bejan and Tien (1978) 7.221 5.404 £ 1025 2.782 £ 1022

u ¼ 1708
lw¼1.0 £ 1025 W/m K 5.406 5.020 £ 1025 2.784 £ 1022

Results in Bejan and Tien (1978) 5.407 5.165 £ 1025 2.788 £ 1022

Table II.
Comparison of the
presented results with
that in work of He (2002)
and He et al. (2004a, b)
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temperature distributions are shown in Figures 6 and 7. It can be found that the present
results of temperature distributions show very similar variation patterns to that shown
in Figures 3 and 4 of Kimura and Bejan (1980). The axial velocity distributions are
presented in Figure 8. It can be compared with Figure 8 in Kimura and Bejan (1980).
Qualitatively, our numerical predictions of axial velocity agree well with that of Kimura
and Bejan (1980), with difference mainly in the center part of the cylindrical space. For
the water case shown in Kimura and Bejan (1980), there is a quite large portion of the
cross section (about 50 per cent) where the axial velocity is near zero, with two opposite
jets in the upper and lower parts of the cylinder. Our results show a gradual variation
from top maximum value to the lower negative maximum value with a very small
portion of zero axial velocity. We believe that this difference is mainly caused by the
difference in Ra number (2.1£ 107 of the present case vs 1.78£ 109 of Kimura and Bejan
(1980)) and different variation patterns of thermal physical properties with temperature.

The above two preliminary computations give some supports to the correctness and
feasibility of the present model and numerical methods.

4.2 Heat transfer rate under different inclination angles
Computational results for the average heat transfer rate in the envelope are
summarized in Tables III and IV for tube wall thermal conductivity of 10 and
0.25 W/m K, respectively. In these tables, Qm is the average heat transfer rate of the
cold and hot ends. Qcond is the conduction heat transfer rate by assuming that the heat
transfer process in the envelope were pure heat conduction through the gas and tube
wall from the hot end to the cold end with the same end temperature difference; RaL,
RaD are the Rayleigh numbers with envelope length and diameter as their
characteristic length, respectively. All the fluid thermophysical properties in the
calculation of Qm, Qcond, RaL and RaD were volume average ones.

To show the effect of the inclination angles and the wall thermal conductivity on the
heat transfer rate more clearly, the variation of Qm vs u with different wall material is
shown in Figure 9(a), where the results of He (2002) and He et al. (2004b) are also
presented. Figure 9(b) is a copy from Thummes et al. (1997) where the natural
convection for a pulse tube refrigerator was estimated from the measured cooling
power. By comparing Figure 9(a) and (b) it can be seen that our numerical prediction of
the variation pattern of heat transfer rate with inclination angle agree well with
Thummes et al. (1997). This comparison gives a further support to the present model.
From Tables III and IV and Figure 9(a) we see that the thermal conductivity of the wall
has a great effect on the natural convection. When the material thermal conductivity is
0.25 W/m K, the greatest heat transfer rate is 7.824 W (occurs at u ¼ 1208). When the
material thermal conductivity is 10.0 W/m K, the greatest heat transfer rate is 10.89 W
(occurs also at u ¼ 1208). According to He (2002) and He et al. (2004b) when the wall
heat conduction is neglected the highest heat transfer rate is 7.22 W (occurs at
u ¼ 1208). It can be seen clearly that the heat transfer rate from the hot end to the cold
end is appreciably enhanced for a tube with higher thermal conductivity. Thus, as
expected in He (2002) the negative deviation of the predicted heat transfer rate in He
(2002) and He et al. (2004b) can be mainly attributed to the neglecting of the effect of the
wall heat conduction, indeed. In Table V, comparisons are made between the results
with different tube wall thermal conductivity. In the table, DQm is the increased
amount of the mean heat transfer rate over the result neglecting the wall heat
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Figure 6.
Temperature distribution
along the vertical diameter
(Ra ¼ 1.884 £ 107)
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conduction (He, 2002; He et al., 2004b), and DQcond is the increased amount of the pure
heat conduction along the tube wall. It can be seen that DQcond is almost a constant for
different orientation, around 0.01 W for lw ¼ 0:25 W=m K and around 0.4 W for lw ¼
10 W=m K; while DQm increases rapidly with the increase in inclined angle and its
values are much larger than the former, except for the zero degree case. This
comparison reveals that the increase in the heat transfer rate in the envelope is mainly
not from the heat conduction in the tube, but some enhancement in the convection must
be induced. This will be analyzed in a later presentation.

In order to find the further effect of larger thermal conductivity, computation are
conducted for four more cases with wall thermal conductivity of 30, 60, 100 and
200 W/m K, respectively. All the results of the total heat transfer rate are shown in
Figure 10, where the wall thermal conductivity is taken as the abscissa. It can be seen
that up to wall thermal conductivity lw ¼ 60:0 W=m K; the increase in the wall

Figure 6.
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thermal conductivity lead to the decrease of the curve slope. However, further increase
in the wall thermal conductivity leads to almost a linear increase of the heat transfer
rate, and there seems no limit of the wall thermal conductivity, beyond which further
increase in it will not have a significant effect on the heat transfer rate. Such results can
be understood as follows. Within the range of lw # 60:0 W=m K; the increase in lw

leads to both intensification of natural convection and heat conduction in the wall. The
larger the wall thermal conductivity, the more important is the wall heat conduction in
the total heat transfer rate from the hot end to the cold end. Thus, the natural
convection takes less and less part of the total heat transfer rate with the increase in the
wall thermal conductivity, and the slope of the curve Q-lw becomes smaller and
smaller. When the wall thermal conductivity is larger than 60 W/m K, the wall heat
conduction dominates compared with the natural convection, leading to almost linear
increase in the heat transfer rate with lw. Thus, for the situation studied there seems no
upper limit of the wall thermal conductivity beyond which further increase in lw will
not have significant effect on the heat transfer rate. Since in the engineering
application, stainless steel is the typical metal used for pulse tube, in the following
presentation, only results for lw ¼ 10:0 W=m K are provided in detail.

A numerical simulation for u ¼ 1208 and lw ¼ 10:0 W=m K by adopting
Boussinesq assumption was also conducted. In the computation, the reference
temperature was taken as tc. The predicted heat transfer rate is 8.71 W which is
20 per cent lower than the result presented in Table III (10.89 W). This computation
demonstrates the necessity of adopting the present model.

It is worth noting that the major purpose of this study is to reveal qualitatively the
effect of the tube wall heat conduction on the characteristics of the natural convection in
the long cylindrical envelope with different inclined angles. The major non-dimensional
quantities are Rayleigh and the major result is the relative variation in heat transfer
rate. Its absolute value is not so important. Furthermore, for the flow and temperature
fields, only their patterns are important and the absolute values are of less importance.

Figure 7.
Top, center and bottom
temperature variation
with longitudinal position
(Ra ¼ 1.884 £ 107)
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Figure 8.
Axial velocity distribution
along the vertical diameter

(Ra ¼ 1.884 £ 107)

The effect of tube
wall heat

conduction

935



Therefore, all the results of velocities and temperatures will be presented in
dimensional way and no attempt was made to make them dimensionless. Although the
specific values of the heat transfer rate, velocity and temperature predicted in this
paper only apply to the case studied, since the value of Ra in the present computation is
a typical one for the pulse tube refrigerator, the physical mechanism revealed, however,
can also be applied to the same category of problems.

4.3 Natural convection enhancement due to tube wall heat conduction
As indicated above in the inclination angle range of 808-1808, the increased amount of
the heat transfer rate Qm is much lager than the increased amount of the pure
conduction Qcond, while in the range of 08-808, the increased amount of heat transfer
rate Qm is very close to the increased amount of pure conduction Qcond. That means
when the hot end is down the effect of the wall heat conduction enhances heat transfer
mainly not by the wall heat conduction itself, but by the enhancement of natural
convection in the envelope. The reason of such enhancement is analyzed as follows.

Figure 8.

HFF
14,8

936



The variation of the cross section average temperature with axial position is
shown in Figure 11(a). Three kinds of averaged temperatures are shown in the
figure: the mean values of the whole cross section (represented by square), the
mean values of tube wall (triangle), and the mean value of the gas section (circle).
Following features may be noted. First, in the most part of the envelope the three
kinds of mean temperatures vary almost linearly along the tube axis, while in

u8 RaL£10210 RaD£1027 GM (kg/s) Qm (W) Qcond (W)

0 1.564 2.145 4.230£1028 4.030 £ 1022 3.936 £ 1022

10 1.557 2.136 5.046 £ 1027 4.884 £ 1022 3.937 £ 1022

20 1.552 2.129 1.240 £ 1026 6.011 £ 1022 3.939 £ 1022

30 1.556 2.134 2.240 £ 1026 7.181 £ 1022 3.938 £ 1022

40 1.567 2.148 3.215 £ 1026 9.850 £ 1022 3.936 £ 1022

50 1.585 2.173 4.033 £ 1026 1.381 £ 1021 3.933 £ 1022

60 1.610 2.208 4.625 £ 1026 2.034 £ 1021 3.928 £ 1022

70 1.652 2.266 5.073 £ 1026 3.364 £ 1021 3.919 £ 1022

80 1.666 2.285 6.456 £ 1026 8.941 £ 1021 3.908 £ 1022

90 1.374 1.884 1.877 £ 1025 5.095 3.919 £ 1022

100 1.528 2.096 5.614 £ 1025 7.336 3.875 £ 1022

110 1.738 2.384 5.767 £ 1025 7.549 3.817 £ 1022

120 1.990 2.729 5.846 £ 1025 7.824 3.763 £ 1022

130 1.951 2.676 5.121 £ 1025 6.984 3.767 £ 1022

140 1.912 2.622 5.073 £ 1025 6.598 3.773 £ 1022

150 1.920 2.633 5.631 £ 1025 6.398 3.765 £ 1022

160 1.894 2.598 5.117 £ 1025 5.854 3.770 £ 1022

170 1.785 2.448 5.909 £ 1025 5.281 3.789 £ 1022

180 1.438 1.972 6.444 £ 1025 4.719 3.878 £ 1022

Table IV.
Computational results for

u ¼ 08 � 1808 and
lw ¼ 0:25 W=m K

u8 RaL£10210 RaD£1027 GM (kg/s) Qm (W) Qcond (W)

0 1.578 2.165 5.286£1028 4.275 £ 1021 4.271 £ 1021

10 1.576 2.162 1.349 £ 1026 4.352 £ 1021 4.272 £ 1021

20 1.575 2.160 2.977 £ 1026 4.545 £ 1021 4.272 £ 1021

30 1.574 2.159 4.773 £ 1026 4.825 £ 1021 4.272 £ 1021

40 1.574 2.158 6.600 £ 1026 5.237 £ 1021 4.272 £ 1021

50 1.573 2.157 8.640 £ 1026 5.700 £ 1021 4.272 £ 1021

60 1.575 2.160 1.250 £ 1025 6.177 £ 1021 4.271 £ 1021

70 1.579 2.166 1.572 £ 1025 7.890 £ 1021 4.271 £ 1021

80 1.554 2.131 3.035 £ 1025 1.208 4.271 £ 1021

90 1.349 1.850 6.808 £ 1025 5.524 4.271 £ 1021

100 1.326 1.819 8.808 £ 1025 8.644 4.270 £ 1021

110 1.355 1.858 9.579 £ 1025 10.12 4.269 £ 1021

120 1.544 2.118 9.873 £ 1025 10.89 4.264 £ 1021

130 1.557 2.135 8.104 £ 1025 10.82 4.263 £ 1021

140 1.548 2.122 9.358 £ 1025 10.49 4.263 £ 1021

150 1.560 2.139 9.767 £ 1025 10.12 4.263 £ 1021

160 1.495 2.050 1.096 £ 1024 9.970 4.265 £ 1021

170 1.492 2.046 1.478 £ 1024 9.736 4.265 £ 1021

180 1.258 1.726 1.532 £ 1024 9.211 4.272 £ 1021

Table III.
Computational results for

u ¼ 08 � 1808, and
lw ¼ 10 W=m K
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a very narrow region near the two ends, the temperatures vary very rapidly. This
means that near the two ends, there is a large amount of heat conducted from wall
to the gas (at hot end) or from the gas to the wall (at cold end). Second, in almost
half length of the envelope the wall temperature is much higher than the average
gas temperature at the same axial location, while in the other half length of the
envelope, the situation is the opposite. This cross sectional temperature difference

Figure 9.
Variation of heat transfer
rate with different
inclination angle and
different material of the
lateral wall
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between the wall and the gas may cause secondary convection in the fluid. It is
this enhanced convection that augments the heat transfer in the envelope: in the
half envelope adjacent to the hot end, the tube wall receives energy from the hot
end by conduction and then transfers most part of the energy to the fluid, while in
the other half of the envelope the tube wall with lower temperature receives
energy from fluid and transfers the energy to the cold end by conduction. In such
a way, the total natural convection heat transfer rate is greatly enhanced. Third,
the average gas temperature in the half envelope adjacent to the cold end is higher
than that adjacent to the hot end. This temperature distribution pattern of gas
seems abnormal. However, if we consider that there is a global circulation between
the hot and cold ends and temperature reverse is an inherent character for the

Case DQm (W) DQcond (W)

Tube wall thermal conductivity¼ 0.25 W/m K
08 0.0107 0.0099

808 0.1541 0.0100
1208 0.6030 0.0098
1808 0.3810 0.0104

Tube wall thermal conductivity ¼ 10 W/m K
08 0.4027 0.3977

808 0.5400 0.3980
1208 3.449 0.3993
1808 4.025 0.3991

Table V.
Comparison of heat

transfer rate with
different tube wall

thermal conductivity
(thickness of tube wall,

d ¼ 1 mm)

Figure 10.
Variation of total heat
transfer rate with wall

thermal conductivity
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convection-dominated regime of natural convection in an enclosure, such a
distribution pattern is understandable. This variation pattern is similar to the
S-type isothermals (temperature reverse) of natural convection in annulus. For
comparison, the results of Kuehu and Goldstein (1976) is shown in Figure 11(b),

Figure 11.
Axial distribution of
section average
temperature for u ¼ 1208
and u ¼ 1808, and
lw¼ 10 W/m K
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where the S-type isothermals can be clearly observed. The S-type isothermals
indicate that in the “S” region fluid temperature at the location near the hot wall is
lower than the fluid temperature at the location near the cold wall. The existence
of the S-type isothermals is a feature common to the natural convection in
enclosure when convection is dominated (Barakos and Mitsoulis, 1994; Ozoe et al.,
1985; Wei and Tao, 1996a, b), and this does not violate the second law of the
thermodynamics. This is because there is a big temperature difference between the
two end walls, and it is this big temperature difference that causes the flow from
the hot end to the cold end.

The enhancement of the natural convection due to tube wall heat conduction can
also be revealed from the value of GM. As indicated earlier, the physical meaning of
GM is the section-averaged axial flow rate. Obviously, for the same orientation, the
larger the value of GM, the strong the natural convection in the enclosure. The
section-averaged axial flow rate GM with different tube materials and orientations
are presented in Table VI. We can infer from the table that the tube wall thermal
conductivity has great effect on the section-averaged flow rate. The larger the tube
wall thermal conductivity, the larger the section-averaged flow rate, and hence the
natural convection.

From Tables III and IV, it can be seen that the orientation of u ¼ 1208 has the
maximum heat transfer rate between the hot and cold ends, therefore, the following
presentations for velocity and temperature distributions will only be given for this
orientation. The enhanced natural convection by wall conduction will be further
demonstrated in the presentation for velocity and isothermal contours.

4.4 Velocity distributions for 1208 orientation
A general view of the velocity distribution in the longitudinal cross section across the
axis of the envelope is shown in Figure 12. For the purpose of clarity, the picture is not
drawn in scale. To see the flow direction more clearly, the local velocity vectors near
the hot and cold ends are magnified and shown in Figure 13. In Figures 12 and 13, the
orientation of the envelope is positioned as it is. In Figure 13, the cross-sectional view of
the velocity vectors are presented for nine sections. For these computations, the tube
wall thermal conductivity is 10 W/m K.

It can be clearly seen from Figures 12 and 13 that there is a global clockwise
circulation within the envelope: heated fluid goes from hot end upward in the lower
part of the envelope, and cooled fluid goes downward in the upper part of the envelope.
Hence, along the hot end fluid moves downward, while along the cold end the fluid
moves upward. And because of this global circulation, velocity vectors in the mid
region around r ¼ 0 appear to be separated: in the upper half and lower half of

u8
GM (kg/s)

Case 40 80 120 140 180

Neglecting wall
heat conduction 2.936 £ 1026 5.687 £ 1026 5.404 £ 1025 4.531 £ 1025 8.739 £ 1025

lw¼ 0.25 W/m K 3.215 £ 1026 6.456 £ 1026 5.846 £ 1025 5.073 £ 1025 6.444 £ 1025

lw¼ 10.0 W/m K 6.600 £ 1026 3.035 £ 1025 9.873 £ 1025 9.358 £ 1025 1.532 £ 1024

Table VI.
Variation of the

cross-sectional axial flow
rate GM with thermal

conductivity and
orientations
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the enclosure, the velocity vectors have opposite directions. Near the hot and cold ends
there are two regions where velocity vectors seem abnormal: near the hot end in the
upper part some fluid goes upward, while near the cold end in the lower part some fluid
goes downward. Actually, in these two local regions the secondary convection induced
by the temperature difference between the tube wall and fluid occurs, and this is shown
in Figure 14. From the velocity field of each cross section shown in Figure 14 it can be
observed that each cross section has at least one vortex, indicating that the flow
structure in such an envelope is a multiple-vortex one. From Figure 14(a)-(c) and (g)-(i) we
find that near the two ends, the velocity adjacent to the lateral wall is comparatively
greater than the inner part of the fluid. The relatively high velocity of the fluid adjacent
to the lateral wall is the indication of an intensified local natural convection in that
region, which is caused by the big temperature difference between the wall and the fluid.
To show the enhanced natural convection due to the tube wall heat conduction, two
special comparisons are made, and are shown in Figure 15. In Figure 15(a) and (b), the
velocity distributions in cross-sections with z ¼ 0:011 and 0.239 m are shown,
respectively. In each pair of pictures, one is the result obtained without considering the
wall heat conduction, while the other is the outcome of wall heat conduction. It can be
seen clearly that in the results with wall heat conduction, the circumferential velocity
near the cylindrical surface is appreciably larger than that without wall heat conduction.
In addition, near the hot end the secondary convection stream goes upward because of
the heating of the fluid and near the cold end the secondary flow moves downward
because of cooling effect. The enhanced circumferential fluid flow certainly makes
contribution to the enhancement of heat transfer.

4.5 Temperature distributions of 1208 orientation
In Figure 16, the isothermal contours in the longitudinal section is shown. To see the
isothermal contours more clearly, the local isothermal contours near the hot and cold ends

Figure 12.
Velocity vector in
longitudinal section for
u ¼ 1208, and
lw¼10 W/m K
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are magnified and shown in Figure 17. Figure 18 shows the isothermals in nine transverse
sections. For these computations, the tube wall thermal conductivity is 10 W/m K.

In the longitudinal section temperature contours seem very complicated. Near the
cold end an isothermal contour with a high temperature of 203.75 K can be found, while

Figure 13.
Details of the flow pattern
in longitudinal section for

u ¼ 1208, and
lw¼10 W/m K
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Figure 14.
Cross section velocity
distribution for u ¼ 1208,
and lw¼10 W/m K
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near the hot end there exists a low temperature contour of 162.5 K. From the
temperature distributions in the vicinity of the hot and cold ends, very steep change of
fluid temperature can be found (Figure 17): within a thin layer about 1 mm the fluid
temperature may increase from 80 to 201.304 K or decrease from 300 to 148.75 K This
complicated temperature distribution is caused by the global convective flow and is
consistent with the section averaged fluid temperature distribution discussed above.
Another important feature of the temperature contours in the longitudinal section is
that some isothermal lines are along the axial coordinate at r ¼ 0: This is mainly
caused by the global circulation of the fluid: in the upper part of the envelope fluid goes
from hot to cold end; while in the lower part of the envelope, cooled fluid goes from cold
to hot end. These two streams meet in the region around r ¼ 0; resulting in the
above-mentioned isothermal distribution.

The temperature distributions at nine cross sections are shown in Figure 18. The
major characters of these contours are as follows. First, the fluid temperature in the
upper part of each section is higher than that in the lower part, reflecting one of the
basic features of natural convection in enclosures. Second, from Figure 18(a)-(d), which
are near the hot end of the pulse tube, it can be observed that the isothermals adjacent
to the solid wall are much denser than that of the inner part fluid. The same character
can be observed from Figure 18(f)-(i) which are near the cold end of the tube. To show
the intensified local convection between the wall and the adjacent fluid more clearly a
comparison is made between the temperature contours for the cases with and without
the wall heat conduction. The results are shown in Figure 19 for the two cross sections
near the hot and cold ends. Figure 18 shows that for the case with wall heat conduction
near the lateral surface there is a very dense isothermal distribution which is basically
parallel to the wall surface, indicating enhanced heat transfer in the fluid. While for the
case without the wall heat conduction, the isothermals intersect normally at the wall
surface, reflecting an adiabatic boundary condition.

Figure 14.
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4.6 Radiation heat transfer between the hot and cold ends
Since the temperature difference between the hot and cold ends is as high as 220 K, it is
interesting to estimate the radiative heat transfer between the two ends, and compare it
with the one by natural convection. The problem at hand may be modelled by an
enclosed system with three surfaces: a hot surface, a cold surface and an adiabatic one.
According to the heat transfer theory (Incropera and DeWitt, 1996), the net radiative
heat transfer rate between the hot and cold ones may be determined by

Figure 15.
Comparison of the cross
section velocity
distribution with and
without wall heat
conduction
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Q ¼
Ebh 2 EbcP

Rt
ð10Þ

where Eb is the black body emissive power, and Rt is the radiative thermal resistance.
The summation of the radiative thermal resistance is

X
Rt ¼

1 2 1h

1hAh
þ

1 2 1c

1cAc
þ Req ð11Þ

The equivalent thermal resistance is determined by

Req ¼
1
1

AhXh;c

þ
1

1
AhXh;a

þ 1
AcX c;a

ð12Þ

For the tube studied, we have:

Ah ¼ Ac; Xh;a ¼ X c;a ð13Þ

In addition, according to the characteristics of the angle factor, we have:

Xh;c þ Xh;a ¼ 1 ð14Þ

where Xh,c only depends on the ratio L/d and can be calculated by

X ¼ 0:5½S 2 ðS 2 2 4Þ1=2� ð15Þ

The parameter S is a function of L/d:

S ¼ 1 þ
1 þ ð0:5d=LÞ2

ð0:5d=LÞ2
ð16Þ

Taking Th ¼ 300 K; Tc ¼ 80 K; and L=d ¼ 6 � 20; 1 ¼ 0:05 � 0:8; the radiative
heat transfer rate between the hot and cold ends varies from 0.00611 to 0.0258 W.

The radiative heat transfer rate is in the order of, or even less than, pure heat
conduction through the gas of the tube. Thus, it can be concluded that compared with
natural convection, the radiative heat transfer rate between the hot and cold ends is
trivial and may be neglected.

Figure 16.
Temperature contour in

the entire longitudinal
section for u ¼ 1208, and

lw¼ 10 W/m K
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5. Conclusions
The effect of the lateral wall heat conduction on the natural convection in a titled long
cylindrical envelope with constant, but different temperature of the two end surfaces
was numerically investigated. It has been demonstrated that:

Figure 17.
Local isothermal contours
for u ¼ 1208, and
lw¼ 10 W/m K
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Figure 18.
Temperature contour in

nine cross-sections for
u ¼ 1208, and
lw¼10 W/m K
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(1) The heat transfer rate from hot to cold end of the enclosure with lateral wall
heat conduction is higher than that neglecting the wall heat conduction. The
enhancement amount of heat transfer rate is usually greater than that enhanced
by the pure heat conduction in the wall only.

(2) When the tube is positioned at an inclination angle range from 08 to 808, the
effect of the lateral wall heat conduction on natural convection is limited
because natural convection is weak in this range of inclination angle; while in
the inclination angle range from 808 to 1808, the increased amount of natural
convection heat transfer rate is much larger than the wall pure heat conduction.

(3) There exists a significant temperature difference between the wall surface and
the fluid near the two ends when the tube wall heat conduction is condiered.

Figure 19.
Comparison of the cross
section temperature
distribution with and
without wall heat
conduction
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This great temperature difference causes an intensified local convection
between the wall and the adjacent fluid, and this is the major reason why the
heat transfer rate increased appreciably by considering the tube wall heat
conduction. When the wall thermal conductivity is larger than a certain value,
for the present case lw ¼ 60 W=m K; the natural convection plays a less
important role in the total heat transfer from the hot to the cold end, and the heat
transfer rate increases almost linearly with the increase in wall thermal
conductivity.

(4) The radiative heat transfer rate between the hot and cold ends is at most in the
order of the pure heat conduction through the gas in the tube, thus its effect on
the cooling capacity loss may be neglected.

(5) To reduce the additional heat transfer from hot to cold ends via heat conduction
mechanism of the wall, its thermal conductivity should be as low as possible.
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